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The problem

RNG: definition

Stochastic simulations such as Monte Carlo and molecular dynamics (with a
thermostat) require a reliable stream of “randomness”.

Approaches:

true randomness from, e.g., fluctuations in a resistor: too slow
pseudorandom number generator: deterministic sequence of (typically integer)
numbers with the following properties

based on a state vector
with a finite period
reproducible if using the same seed
typically produce uniform distribution on [0,NMAX ] or [0, 1]
further distributions (such as Gaussian) generated from transformations

generally two types of pseudo RNGs considered
for general purposes, including simulations
or for cryptographic purposes, requiring sufficient randomness to prevent
efficient stochastic inference
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The problem

The story of R250

John von Neumann
“Anyone who considers arithmetical methods of producing random digits is, of course, in a
state of sin.” (1951)

For any pseudo RNG (or RNG, for short) there must exist an algorithm/test that
distinguishes the generated sequence from a truly random sequence. (If nothing else, this
can be the algorithm generating the sequence itself!)
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The problem

The story of R250

M. Weigel (Coventry/Mainz) random numbers 31/10/2012 4 / 40



The problem

Random number testing

A sequence ui of pseudo-random numbers is perfect iff all sequences (u0, . . . , ut−1) are
uniformly distributed over [0, 1]t for arbitrary t. Clearly, this cannot be the case, already
because of the finite period.

Derived statistical tests:
test for uniformity
correlation tests
comparison to combinatorial identities
comparison to other known statistical results
application tests (e.g., Ising model)

On the other hand, there are cryptographic tests based on the lack of predictability.

No RNG can pass every conceivable test, so a bad RNG is one that fails simple tests, and
a good RNG is one that only fails only very complicated tests.

Test batteries:

DieHard (1995) by G. Marsaglia, now outdated
TestU01 (2002/2009) by P. L’Ecuyer and co-workers, quasi standard
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The problem

Requirements for parallel computing

In applications such as Monte Carlo of lattice systems, we want to update many spins in
parallel. A single “RNG process”producing and handing out the numbers would be a
severe bottleneck, impeding scaling.

hence, each thread needs its own RNG (potentially millions of them)
to minimize the pressure on the bus, on registers and shared memory, the RNG state
needs to be as small as possible
the streams of all RNG instances must be sufficiently uncorrelated to yield reliable
results together
This could be reached by
(a) division of the stream of a long-period generator into non-overlapping

sub-streams to be produced and consumed by the different threads of the
application, or

(b) use of very large period generators such that overlaps between the sequences of
the different instances are improbable, if each instance is seeded differently, or

(c) setup of independent generators of the same class of RNGs using different lags,
multipliers, shifts etc.
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Linear congruential generators

Linear congruential generators

Simplest choice satisfying these requirements is linear congruential generator (LCG):

xn+1 = axn + c (mod m).

for m = 232 or 232 − 1, the maximal period is of the order p ≈ m ≈ 109, much too
short for large-scale simulations
one should actually use at most √p numbers of the sequence
for m = 232, modulo can be implemented as overflow, but then period of lower rank
bits is only 2k

has poor statistical properties, e.g., k-tuples of (normalized) numbers lie on
hyper-planes
state is just 4 bytes per thread
can easily skip ahead via xn+t = atxn + ct with

at = at (mod m), ct =
t∑

i=1

aic (mod m).

can be improved by choosing m = 264 and truncation to 32 most significant bits,
period p = m ≈ 1018 and 8 bytes per thread
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Linear congruential generators

Linear congruential generators

Simplest choice satisfying these requirements is linear congruential generator (LCG):

xn+1 = axn + c (mod m).

(Source: Wikipedia)
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Linear congruential generators

LCGs: implementation

The implementation is indeed very simple and can be performed in-line:
LCG implementation

# define A32 1664525
# define C32 1013904223

unsigned int ran;
CONVERT (ran = A32*ran+C32);

The output function for converting from [0, INTMAX] to [0, 1] could be implemented in
different ways:
LCG implementation

# define MULT32 2.328306437080797e -10f

# define CONVERT (x) ( MULT32 *(( unsigned int)(x)))
//# define CONVERT (x) _curand_uniform (x)
//# define CONVERT (x) __fdividef ( __uint2float_rz (x) ,( float )0 x100000000 );
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Linear congruential generators

LCG: performance

How well do they perform?

0.0

0.1

0.2

0.3

ti
m
e
in

n
s

1 30 60 90 120 150
# blocks

Fibonacci
LCG64
LCG32

Characteristic zig-zag pattern due to commensurability (or not) of block number of with
number of multiprocessors.

Peak performance at 58× 109 (LCG32) and 46× 109 (LCG64) random numbers per
second, respectively.
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Linear congruential generators

LCG: overall benchmarks

Use these LCG generators for the previously developed simulation code for the 2D Ising
model. Exact results are available for comparison. Test case of 1024× 1024 system at
β = 0.4, 107 sweeps.

checkerboard update uses random numbers in different way than sequential update
linear congruential generators can skip ahead: “right” way uses non-overlapping
sub-sequences
“wrong” way uses sequences from random initial seeds, many of which must overlap

TestU01 results:

poor for LCG32
acceptable for LCG64

General conclusion: fast, but not good enough
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Linear congruential generators

RNG quality: Ising results

Table: Internal energy e per spin and specific heat CV for a 1024× 1024 Ising model with
periodic boundary conditions at β = 0.4.

method e ∆rel CV ∆rel tk=1
up tk=100

up
exact 1.106079207 0 0.8616983594 0

sequential update (CPU)
LCG32 1.1060788(15) −0.26 0.83286(45) −63.45
LCG64 1.1060801(17) 0.49 0.86102(60) −1.14
Fibonacci, r = 512 1.1060789(17) −0.18 0.86132(59) −0.64

checkerboard update (GPU)
LCG32 1.0944121(14) −8259.05 0.80316(48) −121.05 0.2221 0.0402
LCG32, random 1.1060775(18) −0.97 0.86175(56) 0.09 0.2221 0.0402
LCG64 1.1061058(19) 13.72 0.86179(67) 0.14 0.2311 0.0471
LCG64, random 1.1060803(18) 0.62 0.86215(63) 0.71 0.2311 0.0471
MWC, same a 1.1060800(18) 0.45 0.86161(60) −0.15 0.2293 0.0435
MWC, different a 1.1060797(18) 0.28 0.86168(62) −0.03 0.2336 0.0438
Fibonacci, r = 521 1.1060890(15) 6.43 0.86099(66) −1.09 0.2601 0.0661
Fibonacci, r = 1279 1.1060800(19) 0.40 0.86084(53) −1.64 0.2904 0.0700
XORWOW (cuRAND) 1.1060654(15) −9.13 0.86167(65) 0.04 0.7956 0.0576
XORShift/Weyl 1.1060788(18) −0.23 0.86184(53) 0.27 0.2613 0.0721
Philox4x32_7 1.1060778(18) −0.79 0.86109(65) −0.93 0.2399 0.0523
Philox4x32_10 1.1060777(17) −0.85 0.86188(61) 0.30 0.2577 0.0622
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Linear congruential generators

RNG quality: TestU01 results

Table: The memory footprint is measured in bits per thread. For the TestU01 results, if (too
many) failures in SmallCrush are found, Crush and BigCrush are not attempted; likewise with
failures in Crush. The performance column shows the peak number of 32-bit uniform
floating-point random numbers produced per second on a fully loaded GTX 480 device.

generator bits/thread failures in TestU01 Ising test perf.
SmallCrush Crush BigCrush ×109/s

LCG32 32 12 — — failed 58
LCG32, random 32 3 14 — passed 58
LCG64 64 None 6 — failed 46
LCG64, random 64 None 2 8 passed 46
MWC 64 + 32 1 29 — passed 44
Fibonacci, r = 521 ≥ 80 None 2 — failed 23
Fibonacci, r = 1279 ≥ 80 None (1) 2 passed 23
XORWOW (cuRAND) 192 None None 1/3 failed 19
MTGP (cuRAND) ≥ 44 None 2 2 — 18
XORShift/Weyl 32 None None None passed 18
Philox4x32_7 (128) None None None passed 41
Philox4x32_10 (128) None None None passed 30
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Multiply with carry

Multiply-with-carry

An only slightly more complicated recursion suggested by Marsaglia is defined by
xn+1 = axn + cn (mod m),
cn+1 = b(axn + cn)/mc.

additive cn is the carry of the previous iteration
for m = 232, we can pack the whole state in one 64-bit integer variable
maximal period is p = am − 2, which can be close to the p = 264 of the 64-bit
LCG
to achieve the full period, one requires am − 1 as well as (am − 2)/2 to be
prime (such that am − 1 is a safe prime)
⇒ expensive to generate many instances, need 64 + 32 bits of state

LCG implementation
unsigned long long int ran;
CONVERT (( unsigned int)(ran = (ran &0 xffffffffull )*AMWC+ran > >32));
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Lagged Fibonacci generators

Lagged Fibonacci RNG

Longer period can only be achieved with larger state, e.g.,

xn = asxn−s ⊗ arxn−r (mod m),

operator ⊗ typically denotes one of the four operations addition +, subtraction −,
multiplication ∗ and bitwise XOR ⊕
state size 32× r bits (for r > s) ⇒ use state sharing to reduce effective memory
requirements
for ⊗ = + maximal period is p = 2r − 1
can be implemented directly in floating point arithmetic, un = un−r + un−s (mod 1).
s random numbers can be generated in one vectorized call
choose, e.g., r = 521, s = 353 and r = 1279, s = 861, the latter with period
p ≈ 10394

memory requirement (r + s)/n words per thread
can use skipping or random seeds
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Mersenne twister

Mersenne twister

See:

M. Mansen, M. Weigel, and A. K. Hartmann, Eur. Phys. J. Special Topics 210, 53 (2012.)
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XORShift generators

XORShift: definition

Another generator proposed by Marsaglia based on the observation that an XOR of a word
with a shifted version of itself can be performed very fast. The suggested recursion is

xn = xn−1(I ⊕ La)(I ⊕ Rb)(I ⊕ Lc) =: xn−1M ,

where La and Rb denote left shift by a bits and right shift by b positions, respectively.

maximum period is p = 2w − 1, where w is the number of bits in x
the combination of w = 160 with a Weyl generator defines XORWOW included in
CUDA (state is already too large)
instead, use w = 1024 and employ state sharing again, using the one 32-bit word for
each of the 32 threads of a warp
with appropriate parameters, period is 21024 − 1
shifts can be implemented efficiently over word boundaries using padding of the state
array
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XORShift generators

XORShift: implementation
We use a = 329, b = 347 and c = 344, such that WORDSHIFT= ba/32c = 10.
LCG implementation

__device__ state_t rng_update ( state_t state , int tid ,
volatile state_t * stateblock )

{
/* Indices . */
int wid = tid / WARPSIZE ; // Warp index in block
int lid = tid % WARPSIZE ; // Thread index in warp
int woff = wid * ( WARPSIZE + WORDSHIFT + 1) + WORDSHIFT + 1;

// warp offset
/* Shifted indices . */
int lp = lid + WORDSHIFT ; // Left word shift
int lm = lid - WORDSHIFT ; // Right word shift

/* << A. */
stateblock [woff + lid] = state ; // Share states
state ^= stateblock [woff + lp] << RAND_A ; // Left part
state ^= stateblock [woff + lp + 1] >> WORD - RAND_A ; // Right part

/* >> B. */
stateblock [woff + lid] = state ; // Share states
state ^= stateblock [woff + lm - 1] << WORD - RAND_B ; // Left part
state ^= stateblock [woff + lm] >> RAND_B ; // Right part

/* << C. */
stateblock [woff + lid] = state ; // Share states
state ^= stateblock [woff + lp] << RAND_C ; // Left part
state ^= stateblock [woff + lp + 1] >> WORD - RAND_C ; // Right part

return state ;
}

M. Weigel (Coventry/Mainz) random numbers 31/10/2012 28 / 40

XORShift generators

XORShift: implementation

We use a = 329, b = 347 and c = 344, such that WORDSHIFT= ba/32c = 10.

{

0

0

target bits

+

+

<< a mod 32

>> 32 - a mod 32

i+a/32 i+a/32+1

.. a/32-1 words ..

substate i

0 0

offset warp 0 offset warp 1

{

padding

11 zeros {

state of

32 words{ padding

11 zeros

due to single-thread scheduling, no thread synchronization is required
use volatile keyword to ensure writes
use skip-ahead to create sub-streams
combine with Weyl generator, yn = (yn−1 + c) mod 2w, to further improve quality

M. Weigel (Coventry/Mainz) random numbers 31/10/2012 28 / 40

Counter-based generators

Cryptographic generators

For the Weyl generator above, we can evaluate the n element in one step,

yn = (y0 + nc) mod 2w.

This can be interpreted as applying a simple, bijective function to a counter n,

xn = fk(n).

Here, skip-ahead is trivial. Unfortunately, the quality of the Weyl sequence is very bad. If
fk is bijective, the period is 2w.

Are there better choices for fk? Yes, for instance cryptographic functions that are (a)
bijective, (b) depend on a key k, and (c) translate the plaintext n into the ciphertext xn .
By definition, if xn contains any structure that makes it differ from a random sequence of
bits, the cipher is susceptible to an attack.

Well-known and proven symmetric-key cryptosystems are DES and AES.
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Counter-based generators

Excursion: simplified DES

DES is a block cipher, where each block is encrypted separately. Consider a single block

L0 R0
6 bits 6 bits

of 12 bits. Encryption works iteratively, where in the ith round an 8-bit key Ki is used to
transform Li−1Ri−1 to the output LiRi as follows

Li = Ri−1, Ri = Li−1 ⊕ f (Ri−1,Ki),

where ⊕ denotes XOR or bitwise addition modulo 2.

After n rounds (known as Feistel iterations), we have LnRn . To decrypt, switch to RnLn
and use the keys in reverse order,

[Ln ][Rn ⊕ f (Ln ,Kn)].

From encryption we know Ln = Rn−1, Rn = Ln−1 ⊕ f (Rn−1,Kn) and hence

[Ln ][Rn ⊕ f (Ln ,Kn)] = [Rn−1] [Ln−1 ⊕ f (Rn−1,Kn)⊕ f (Ln ,Kn)] = [Rn−1] [Ln−1],

where f (Rn−1,Kn)⊕ f (Ln ,Kn) = 0 since Ln = Rn−1. Continuing with the key sequence
Kn , Kn−1, . . ., K0, we arrive at R0L0 and hence L0R0.
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Counter-based generators

Excursion: simplified DES (cont’d)

One advantage of this procedure is that encryption and decryption are almost identical,
use the same keys and can hence use the same hardware.

How should we choose f ? Obviously, it should not be “nice”, e.g., linear and bijective. We
use the following combination

The 6-bit input Ri−1 is sent through an expander function,

e(m1m2m3m4m5m6) = m1m2m4m3 m4m3m5m6,

yielding 8 bits.
We derive the key Ki for round i from K = k0k1k2k3k4k5k6k7k8 by

Ki = k(i−1) mod 9ki mod 9k(i+1) mod 9 · · · k(i+6) mod 9.

The 8 bits from the expander are then XORed with Ki .
In a third step, these 8 bits are passed through one of two S-boxes,

S1 =
[

101 010 001 110 011 100 111 000
001 100 110 010 000 111 101 011

]
S2 =

[
100 000 110 101 111 001 011 010
101 011 000 111 110 010 001 100

]
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Counter-based generators

Excursion: simplified DES (cont’d)

For the S-boxes, the 8 bits from step two are broken into two 4-bit parts. The first part is
sent to S1 and the second part to S2. The first bit of each part selects the row in the
S-box, the remaining three bits the column. Altogether, we have, e.g., for Ri−1 = 100110
and Ki = 01100101

e(100110)⊕Ki = 10101010⊕ 01100101 = 1100 1111.
Then, 1100 is sent to S1. The second row, fifth column contains 000. The second part
1111 is sent to S2, yielding 100. Hence the total output is f (Ri−1,Ki) = 000100. In total,
we have

Li−1 Ri−1 7→ Ri−1 Li−1 ⊕ f (Ri−1,Ki)
011100 100110 100110 011100 ⊕ 000100
011100 100110 100110 011000

Breaking DES
A successful approach to cryptosystems of the DES type is differential cryptanalysis
(which was suggested by Biham and Shamir in 1990 but was, in fact, known to the
inventor of DES in 1979): the idea is to compare the differences in ciphertexts for suitably
chosen pairs of plaintext. It has been shown that for DES this is no better than a brute
force attack.
A more sophisticated approach is linear cryptanalysis which attempts to find a linear
approximation to the function f . This is better than brute force.
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Counter-based generators

Philox et al.

DES and AES can be used as RNGs, and there are even modern CPUs that implement
them in hardware. Then, they are very fast.

As an alternative due to Salmon et al., consider simplified iteration in the spirit of AES.
The following,

mulhi(a, b) = b(a × b)/2wc,
mullo(a, b) = (a × b) mod 2w,

is very fast on most architectures. Then, pick two words (L,R) out of N and define an
S-box

L′ = mullo(R,M ),
R′ = mulhi(R,M )⊕ k ⊕ L,

and perform r Feistel iterations on N/2 such S-boxes with constant key k (use
permutations, or P-boxes in between the S-box applications). This generates a bijection of
the desired form. It defines a class of RNGs dubbed

Philox-Nxw_r
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Counter-based generators

Philox et al.: properties

it is found empirically that for 4× 32 bits, 7 Feistel iterations are sufficient to achieve
Crush-resistance
quality can be tuned with varying r
depending on the implementation, the generator can be very fast
the generator does not have a state per se as it is counter based; this significantly
reduces bus pressure in parallel environments
different keys can be used to generate independent sequences of random numbers;
64-bit keys allow for 264 independent sequences
can use intrinsic variables such as particle number, temperature, disorder index, etc.
to select sequences
counter could be iteration number in Monte Carlo
this ensures identical results independent of the parallel setup
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Counter-based generators

Summary and outlook

This lecture
This lecture has given a survey of random number generators in a massively parallel
environment. On GPUs, we need a massive number of independent RNGs with
small state. Two strategies have been explored: individual generators with small
states which, however, suffer from small periods and state-sharing among several
instances. An independent alternative are counter-based generators.

Next lecture
In lecture 4, we will have a look at some more advanced simulation of spin models,
including cluster-update and multicanonical simulations.

Reading
M. Manssen, M. Weigel, and A. K. Hartmann, Eur. Phys. J. Special Topics 210, 53 (2012)
[arXiv:1204.6193].

M. Weigel (Coventry/Mainz) random numbers 31/10/2012 40 / 40


	The problem
	Linear congruential generators
	Multiply with carry
	Lagged Fibonacci generators
	Mersenne twister
	XORShift generators
	Counter-based generators



